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ABSTRACT

Engineering design and optimization e�orts using
computational systems rapidly become resource inten-
sive. The goal of the surrogate{based approach is to
perform a complete optimization with limited resources.
In this paper we present a Bayesian{validated approach
that informs the designer as to how well the surrogate
performs; in particular, our surrogate framework pro-
vides precise (albeit probabilistic) bounds on the errors
incurred in the surrogate{for{simulation substitution.
The theory and algorithms of our computer{simulation
surrogate framework are �rst described. The utility of
the framework is then demonstrated through two illus-
trative examples: maximization of the owrate of fully
developed ow in trapezoidal ducts; and design of an
axisymmetric body that achieves a target Stokes drag.

INTRODUCTION

Computational design e�orts typically consist of a se-
quence of optimization problems characterized by dif-
ferent combinations of design parameters and objective
functions. Each design problem is solved by means of
a nonlinear optimization algorithm. Numerical simu-
lations can be incorporated into the optimization algo-
rithm either by direct{insertion or through a surrogate{
based approach. In direct{insertion, the large{scale sim-
ulation is inserted into the optimization algorithm as a
function call. In the surrogate{based approach, a sur-
rogate (a simple model such as a response surface) for
the simulation is �rst constructed, and the surrogate
is then incorporated into the optimization algorithm in
place of the full simulation.

Many optimization problems based upon direct{

insertion are hindered, �rst, by the cost of each inquiry
to the simulation code, and second, by the algorith-
mic di�culties of merging the large{scale simulation
with the mathematical programming algorithm. Fur-
thermore, the high cost of objective{function evalua-
tions for the direct{insertion method reduces the inter-
activity of the design process. Finally, the number of
objective{function evaluations required to achieve the
optimal solution is typically not known a priori, and
computational resources may thus be exhausted before
a feasible design is achieved. The latter is especially
pronounced in the case of multidisciplinary optimiza-
tion (Newman et al., 1992).

To circumvent these di�culties, we pursue a
surrogate{based approach to optimization (McKay et
al., 1979; Sacks et al., 1989; Barthelemey and Haftka,
1993; and Ye�silyurt and Patera, 1995). The surrogate
approach o�ers a number of advantages. First, by con-
struction, surrogate evaluations require very little com-
putational e�ort, and are thus easily incorporated into
optimization procedures. Second, the very low compu-
tational requirement permits a more complete optimiza-
tion by assuring that computational resources will not
be exhausted before the design is complete. Third, sur-
rogates create highly interactive and exible design en-
vironments, allowing multiple optimization tasks char-
acterized by di�erent design parameters to be pursued
more easily.

As regards disadvantages, the most important draw-
back is that surrogate{based optimization introduces
a new source of error. A surrogate validation strat-
egy and appropriate error norms must be developed to
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quantify the discrepancy between the surrogate and the
actual simulation, and to estimate the errors in system
predictability and optimality. The former provides a
bound on the behavior of the actual objective function
in the neighborhood of the surrogate minimizer, while
the latter provides a bounding region in which the ac-
tual minimizer lies.
In this paper, we �rst describe the optimization prob-

lem which is central to the remainder of the paper. We
then briey review our baseline surrogate framework,
and o�er references to more detailed descriptions. Next,
we present several improved surrogate algorithms that
have been developed. In the �nal section of the paper,
we apply the surrogate framework to two design op-
timization problems: optimization for pressure{driven
ow in a trapezoidal duct; and shape optimization for
Stokes ow past an axisymmetric body.

OPTIMIZATION
The minimizer to the exact optimization problem is

given by

p� = argmin
p2


jS(p) � �j ; (1)

where p is the vector ofM design inputs which lie in the
input (or \design") domain 
 � IRM , S(p) is the input{
output relation, and � is the target value. This problem
is also referred to as a \discrimination" problem (Seber
and Wild, 1989). More general objective functions are
examined in Ye�silyurt (1995), and Ye�silyurt and Patera
(1995).
As already described, direct insertion of the full sim-

ulation for S(p) in equation (1) is impractical. Instead,
a surrogate, ~S(p), for the simulation is inserted into the
optimization problem. The minimizer for the resulting
surrogate{based optimization problem is given by

~p� = argmin
p2


j ~S(p)� �j : (2)

The optimization then proceeds as for direct{insertion,
but the surrogate is evoked instead of the simulation.
The advantages of using a surrogate framework for

optimization have already been described. The issues of
predictability and optimality must be addressed (Bohlin,
1991). For predictability, we are concerned with how
the actual simulation behaves in the vicinity of the
surrogate{predicted minimizer, ~p�. We seek to be able
to bound j ~S(p � ~p�) � S(~p)j, and also to ensure that
this bound is acceptably small. The proximity of ~p�

to p�, the actual optimizer, (i.e. optimality), is also
important, although not as critical in this context as
predictability. The validation strategy which yields pre-
dictability statements is addressed next.

SURROGATE FRAMEWORK
The Bayesian{validated surrogate methodology pre-

sented here has the distinguishing attribute of inte-
grating a complete and rigorous validation framework.
The outcome of the validation step is fully incorporated
into the a posteriori purposive analysis, and hence the
predictability of any optimization is a natural exten-
sion of the validation. The validation itself is based
on the results of order statistics (David, 1981) where
the validation sample size (Nva) is determined a pri-

ori. In this section, we briey describe the baseline
surrogate{validation algorithm and a posteriori error
analysis framework. A full description, and additional
algorithms, can be found in Paraschivoiu (1995) and
Otto et al. (1995).

A Baseline Approach

We �rst de�ne a model prediction error estimator:

U = max
p2Xva

p

jRj � eS(p)j ; (3)

where X va
p

is a random set of Nva points in 
 dis-
tributed according to an importance function �(p).
Then, given a vector of \uncertainty" parameters (�)
we can calculate the required sample size. Two dif-
ferent predictability statements have been developed:
\Prediction Region" (PR) and \Proximal{Candidate"
(PC). The former gives a predictability statement for
a region neighboring the surrogate{based optimum, ~p�,
while the latter evaluates the predictability of a speci�c
nearby candidate design.
The validation sample sizes for each approach are

PR : Nva � ln "2 = ln(1� "1) ; (4)

PC : "2 =
1

�(Nva + 1)

�
1� (1� �)N

va
+1

�
; (5)

where � = ("1; "2) 2 (0; 1)2 in equation (4) and � =
(�; "2) 2 (0; 1)2 in equation (5).

A Posteriori Error Analysis

Two approaches to the error analysis of our surrogate{
predicted optimum points are presented. The �rst is
a \Prediction Region" approach and the second is a
\Proximal{Candidate" based approach. Both of these
analyses seek to address the predictability concerns al-
ready described.

Prediction Region. The inputs to the \Prediction
Region" error analysis are the model prediction error,
U , from the surrogate validation, and the surrogate{
predicted optimizer ~p�. We introduce a parameter, �,

2



"1 < � < 1, and construct a region, R such that

Z
R

�(p)dp = � : (6)

Here, R is typically chosen as that region, R0, of �-
measure � which minimizes �max, the maximum dis-
tance, �(p0; ~p�), between all points p0 2 R0 and ~p�.
The distance �(�; �) can be any valid distance between
p0 and ~p�.
Introducing a surrogate sensitivity parameter

� = max
p2R

j ~S(p)� ~S(~p�)j ; (7)

the following statement can be made: There exists
many points, p̂, in the region R such that, with prob-
ability greater that 1� "2,

jS(p̂)� �j � j ~S(~p�)� �j+$ ; (8)

where $ = U + � is the predictability{gap. This state-
ment provides a probabilistic bound on the actual sys-
tem performance, jS(p̂) � �j, for points, p̂, near the
surrogate{predicted optimum, ~p�. Recall that the num-
ber of simulations to obtain U is given by Equation (4).

Proximal{Candidate. In many problems it may be
di�cult, or even impossible, to explicitly construct pre-
diction regions R � 
 as described in the last sec-
tion. Another approach is to only observe the pre-
diction region (and not construct the region) through
sample candidate designs, P̂�, which, with a prescribed
probability, will exhibit actual performance within the
predictability gap of the surrogate{predicted optimal
performance. We refer to this method as a \Proximal{
Candidate" approach to a posteriori analysis (Otto,
1995, and Otto et al., 1995).
The two inputs to the validation are � and "2, where

0 < �; "2 < 1. In the a posteriori analysis, we introduce
that region R � 
 which satis�es Equation (6) and
minimizes �max, and sample a P̂� 2 R according to
the probability density

�R(p) =
1

�
�(p)jR 8p 2 R : (9)

Using acceptance{rejection techniques, the region R

can be measured and sampled without actually con-
structing the region.
The a posteriori error statement (similar to the \Pre-

diction Region" result) is

PrfjS(P̂�)� �j � j ~S(~p�)� �j+$0g � 1� "2 ; (10)

where $0 = U + �0 is the predictability gap and �0 =
j ~S(P̂)� ~S(~p�)j. In words, Equation (10) says that, with

probability greater than 1 � "2, there will exist a can-
didate design P̂� for which actual system performance,
jS(P̂�) � �j, is within $0 of the surrogate{predicted
optimum objective value, j ~S(~p�) � �j. The number of
validation points needed is given by Equation (5).

Finally, we remark that the \uncertainty" vector �
measures the degree of precision with which the surro-
gate must be validated. As "1, "2, and � decrease, the
number of validation points increases, and more infor-
mation as to the quality of the surrogate is extracted.
The probabilistic framework results in a �xed validation
sample size, allowing the designer to tune the \uncer-
tainty" vector to the available resources.

IMPROVED ALGORITHMS

In this section we describe several improvements to the
baseline algorithm that have been developed. A full
description of the additional algorithms can be found
in Paraschivoiu (1995).

Elemental Algorithm

One of the shortcomings of the baseline approach to
validation is the global nature of the model prediction
error U . That is, a large error at one point of the in-
put space has a dominating inuence over the entire
input space. One way to address this drawback is to
divide the input domain, 
, into L non{overlapping,
elements (or sub-domains) (Paraschivoiu, 1995; Otto et
al., 1995). Validation is performed independently on
each sub-domain yielding a local model prediction er-
ror, (U `; ` = 1; : : : ; L), associated with each element,

`. The U ` for each element is then used in the a pos-

teriori error analysis.

For the elemental algorithm, the size of the validation
sample for each element, Nva `;, is

PR : Nva `; �
ln
�
1� (1� "2)

1=L
�

ln(1� L"1)
; (11)

PC : "2 = 1� LNva `;

Z �L

0

�
1�

z

�L

�
(12)

�
1� (1� z)N

va `;
�L

(1� z)
Nva `;�1

dz :

The locality improvement in the model prediction er-
ror estimator is obtained with a small increase in the
number of validation points for small numbers of ele-
ments. For a very large number of elements, even fewer

validation points are needed than for a single element.
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Cross{Validation, Re{Sampling

A natural extension of the elemental algorithm for
the PR approach is an intra{model, cross-validation
procedure (Paraschivoiu, 1995) which allows the use of
the available simulation data for both construction and
validation. Indeed, due to the elemental partitioning,
the validation data from one element can be used for
the construction of a surrogate model in another el-
ement. The only restriction is an ordered dependence
requirement, which means that validation data can only
be used for construction in higher numbered elements
(with respect to some ordering).

Model{Sequential Approach

To achieve a desired target level for the model pre-
diction error estimator, a model{sequential approach is
pursued. We assume that we are given a sequence of J
models, eSj(p); j = 1; : : : ; J , and a desired model pre-
diction error, � > 0. The sequential algorithm validates
each subsequent model with the same points as used
for the previous model plus one new random validation
point. If, for the jth model, the model prediction error
estimator is less than or equal to �, then that model
is selected. If, on the other hand, all the models have
been tested, and none has satis�ed the desired model
prediction error, then the last model is selected. Re-
spectively, � or UJ then serves as the model prediction
error estimator in the a posteriori analysis. The initial
number of validation points is given by

Nva(0) = ln

�
"1"2

1� (1� "1)J

�
= ln(1� "1)� 1 : (13)

An Adaptive, Model{Sequential Approach

To integrate construction into the model{sequential
approach, an adaptive algorithm is considered. In this
algorithm, simulation evaluations used for the valida-
tion of previous models are incorporated into the sur-
rogate construction, and a new set of validation points
is chosen for each subsequent validation. The size of
each sample set (assuming J �nite) is

Nva = ln
�"2
J

�
= ln(1� "1) : (14)

The desired model prediction error, �, is used as pre-
viously described in the model-sequential approach. In
practice, this approach is very powerful for the con-
struction of surrogates that achieve the desired model
prediction error. However, the cost of evaluating a new
set of validation points at each step is expensive. This
drawback is currently under investigation.

We conclude by commenting that the elemental par-
titioning can be incorporated in both the sequential and
the adaptive methods. This combination o�ers signif-
icant advantages in obtaining the desired local model
prediction error with a minimal number of validation
points. Indeed, in some elements, the desired elemen-
tal model prediction error can be reached faster than
in others, and the iterative process stopped in those
elements.

APPLICATIONS

Flow in a Trapezoidal Duct

As our �rst illustrative example, we consider fully de-
veloped laminar uid ow in a duct of constant trape-
zoidal cross-section. The optimization problem is to de-
termine the geometry, for a given cross-sectional area
A0, that achieves a target owrate. In this problem the
pressure gradient is �xed. The trapezoidal geometry
is de�ned by two inputs; the angle between the base
and the side, and the height normalized with respect
to the base length. The non-dimensional form (̂ ) of
the Poiseuille ow equation inside the duct (D), with
non-slip boundary conditions on the walls (B) is

�
r2û = �1 in D :

û = 0 on B :
(15)

Using non-dimensional variables we relate the nor-
malized owrate to the geometrical properties. We �rst
write the pressure drop (�P ) as a function of the fric-
tion factor. Knowing that, for laminar ow, the fric-
tion factor is simply a shape{dependent constant g over
the Reynolds number, we can obtain an expression for
the dimensional owrate; here the Reynolds number is
taken with respect to the hydraulic diameter of the di-
mensionless trapezoidal section, D̂h. The normalized
owrate can be written

Q̂ =
Q

2�P
�L

A0

2
=
D̂2

h

gÂ
=

�̂u

2Â
; (16)

where L is the length of the duct, � is the dynamic vis-
cosity of the uid, and �̂u is the non-dimensional cross{
sectional average velocity.
Equation (16) is useful in incorporating prior infor-

mation on particular geometries through di�erent val-
ues of g. In addition, we see that our optimization
problem is simpli�ed by the absence of scale depen-
dency, that is, our solution is independent of the cross{
sectional area, A0, of the dimensional duct. The opti-
mization problem is a simple inverse{simulation type:
�nd the input geometry (ĥ�; ��) that minimizes the dif-
ference between the target � and the numerical solution
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of the normalized owrate . That is,

(ĥ�; ��) = arg min
(ĥ;�)2


jS(ĥ; �)� �j (17)

where � =
Qdesired

2�P
�L

A0

2
, and S(ĥ; �) �

�̂u

2Â
.

To obtain the velocity �eld in the trapezoidal chan-
nel, a numerical approximation scheme is used to solve
Equation (15). In particular, we employ a second or-
der �nite element method on triangular elements in IR

2

with automatic mesh generation and conjugate gradi-
ent iterative solution. For all geometries, approximately
4500 degrees-of-freedom are used, and each evaluation
of the owrate takes approximately 10 seconds on a
single processor of a HP9000/735 workstation. The nu-
merical results can be considered to have a normalized
`1 error norm less than 5�10�4, which motivates us to
consider these results to be without \noise" (Ye�silyurt
et al., 1995).

Surrogate approach. The design (or input) space
covers di�erent trapezoidal geometries ranging from a
rectangle to an isosceles triangle. Small clearance limits
are included to yield the following input space:


 =
n
(ĥ; �)j0:01 � ĥ � min(tan �; 4:0); 0:05 � � �

�

2

o
:

(18)
In all cases the importance function is taken to be uni-
form. We �rst apply the baseline algorithm to �nd the
trapezoidal geometry that achieves a target normalized
owrate. In this �rst optimization exercise, we con-
sider only variation of the height of the section, while
�xing the angle of the trapezoid to �

2
; the corresponding

\slice" of 
, [0:0; 0:5], is denoted 
0.
The four steps of the surrogate{based optimization

are as follows. First, we construct a surrogate based on
prior information only; in particular, we take g = 53:33
(the known value for an equilateral triangle) in Equa-
tion (16). In Figure 1, the normalized owrate is plot-
ted versus the dimensionless height, and the surrogate
is shown by the solid line. Second, we use this surro-
gate to �nd the height (ep�) corresponding to the de-
sired target owrate, � = 0:01. Third, we wish to
know how well our surrogate has performed. To ob-
tain this information, validation is carried out. The
number of validation points, that is the number of cal-
culations of the owrate for random height values, is
obtained from Equation (4). For "1 = "2 = 0:2, eight
validation points are needed. These points are repre-
sented by circles on Figure 1. The maximum di�er-
ence between the surrogate and the exact simulation
value of the normalized owrate over all the validation
points determines the model prediction error estimator,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q̂

�

{ Surrogate

� Validation points

ĥ
ep�

z }| {
P
�
�

�
�

Figure 1: Surrogate for duct ow example using the

\baseline" algorithm.

U . Fourth, and �nally, we can make the following pre-

dictability statements: With probability > 0:8 (1� "2);
(a) the surrogate error is less than U = 15:8% over
at least 80% (1� "1) of the input domain 
0, and, (b)
there exists many points in the prediction neighborhood
of the surrogate optimum geometry ep�, P�

�
, where the

exact simulation is within 34:6% of the target owrate,
normalized by the maximum value of the surrogate.

The predictability statement indicates (a) quantita-
tively how good the surrogate is over the entire domain,
and (b) how well it performs in the neighborhood of the
actual optimum. The neighborhood is indicated on the
�gure by P�

�
. This example is useful to demonstrate

not how well we can construct a surrogate, but rather,
what can be said about the surrogate once it is con-
structed. In this case, we see that our model does not
perform very well.

One way to decrease the error estimate, for a given
construction, is to decompose the input space into ele-
ments and validate the surrogate in each element. We
divide the input space into eight di�erent elements
(shown in Figure 2). In addition, we use the cross{
validation algorithm to simultaneously construct and
validate as follows: First, element one is constructed
using prior information (no ow at ĥ = 0) and only one
construction point. Second, this surrogate is validated
with three validation points. Third, the points used to
validate the surrogate in the current element are used
to construct the surrogate in the next element with a
quadratic extrapolation. The second and third steps
are repeated until surrogates are constructed and vali-
dated in all of the elements. This procedure results in
a surrogate with a local U of less than 0:8% in each ele-
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Figure 2: Surrogate for duct ow example using the

\Elemental" algorithm.

ment. This surrogate (solid line in Figure 2) can now be
used similarly to the baseline algorithm, and surrogate{
based optimization can be pursued. The predictability
statement is improved due to the use of the local model
prediction error.

Finally, the adaptive algorithm is applied to demon-
strate the surrogate framework for a two{dimensional
input space. The \uncertainty" vector, �, is set to
� = ("1; "2) = (0:05; 0:10). We limit ourselves to
at most �ve models (J = 5) constructed using Shep-
ard's algorithm (Shepard, 1968), with which we wish
to achieve a model prediction error of less than 5%
(� = 8:8 � 10�4). From Equation (14), the number
of validation points needed for each validation step is
77. The target error was achieved with the second sur-
rogate and required 127 simulations for construction.
The �rst model had 50 construction points and per-
formed with a 7:8% model prediction error estimate.
Therefore, a second surrogate was needed. For this sur-
rogate, the 77 points used to validate the �rst surro-
gate were used, along with the original 50 construction
points, to achieve the target error.

The surrogate{based maximization of the owrate

yields
ê
h
�

= 0:99; e�� = 1:55; eS(êh�; e��) = 1:76 � 10�2.
Figure 3 shows isocontours of the normalized owrate
given by the surrogate model, the surrogate{predicted
optimum geometry, and the prediction neighborhood.
Based on the validation step and the a posteriori er-
ror analysis, the predictability statements read, with
probability � 0:9: (a) the surrogate error is less than

� = 5% over at least 95% of the input domain 
(ĥ; �),
and, (b) there exists many points in the prediction
neighborhood of the surrogate optimum geometry ep�,

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

�

{ Isocontours of eS
� Optimum point

+++ Prediction neighborhood

ĥ

Figure 3: Surrogate for duct ow example using the

\adaptive" algorithm.

P
�
�
, where the exact simulation is within 8:9% of the

target owrate.
The exact solution to this optimization problem is a

square cross{section geometry. We can compare this
with our surrogate{based optimization on Figure 3 and
observe that they are very close. In addition, the dif-
ference between the maximum normalized owrate pre-
dicted by the surrogate and predicted by the simulation
is less than 0:1%. This is well within the model predic-
tion error estimate. For this optimization problem, we
see that sharp results can be obtained at the expense of
increased cost. In practice, this cost could be decreased
by using combinations of the previous algorithms.
We conclude by acknowledging that this test case falls

short of completely illustrating the advantages of the
surrogate framework. For example, due to the relatively
inexpensive computations, and because the objective
function is smooth, a direct insertion approach could
be used. However, for multiple design optimizations,
direct insertion, even in this case, can be prohibitively
expensive compared to the surrogate framework. Fur-
thermore, in practice, most engineering optimization
studies require expensive simulations (Ye�silyurt et al.,
1995; Ye�silyurt and Patera, 1995).

Shape Optimization

Many engineering design problems involve not only
con�guration optimization, in which optimal values of
a small number of parameters (e.g. radius, position,
angle, etc.) are desired, but also shape optimization, in
which the optimal form of a curve is desired. Given the
deterioration of volume{based error estimates present
for problems with high input dimensions, it would ap-
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pear that shape optimization problems (described ex-
actly by an in�nite-dimensional input space) would be
intractable in this framework. This is not the case, how-
ever, primarily due to two reasons. First, highly irreg-
ular shapes will typically be non-optimal, allowing for
truncation of the input space. Second, the remaining
inputs are typically highly correlated, further reducing
the e�ective volume of the input space.

To demonstrate the surrogate{based shape optimiza-
tion procedure, we examine the Stokes drag over an
axisymmetric, fore{aft symmetric body. The simula-
tion for which the surrogates are substituted is a �nite
element solver utilizing an Uzawa nested conjugate gra-
dient iteration. The inputs to the problem are a set of
coe�cients which describe the shape, b(�), and the out-
put is the non-dimensional drag, FD . The design op-
timization problem is to �nd the optimal shape, b�(�),
for a given target drag, �;

b�(�) = arg min
b(�)2W+;b(�)�C(�)

jFD � �j : (19)

The general geometry and the physical constraint on
the optimal pro�le, C(�), are shown in Figure 4.

The surrogate for the Stokes drag over the body is
simply the Stokes drag over a sphere of equivalent sur-
face area. Other surrogates such as response surfaces
constructed from simulation data could be considered
instead. The surrogate{based optimization problem is
identical to Equation (19), but the simulation result,

FD , is replaced by the drag surrogate, eFD.
The quarter{body pro�le of the shape in the �rst

quadrant describes the full three{dimensional body.
The shape is expressed as a positive function b(�) 2
W+([0; �]), where W+ is a set of admissible functions.
We introduce a basis for W+([0; �]) and truncate this
basis to M terms. The shape function can then be ex-
pressed as

b(�) = 1 +

MX
j=1

Aj cos(2j�) : (20)

The result is that the shape pro�les are parameterized
by AM = fA1; : : : ; AMg, which acts as the input, p.
The shapes in this problem are described by 10 inputs
(M = 10).

To generate a random ensemble of shapes for valida-
tion, and for Monte Carlo sampling for the proximal{
candidate error analysis, a random{shape process in-
ducing an importance function on the set of coe�cients
is employed (Elishako�, 1983; Otto, 1995; Otto et al.,
1995). With this method, certain smoothness condi-
tions at the endpoints of the shape are enforced, as are

2 (cm)

2 (cm)

C(�)

~b
�

(�)

B̂
�

(�)

�

�

�

�

��

�
�

�
�
�9
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Figure 4: Surrogate predicted optimal and proximal

candidate shapes.

statistical quantities of the ensemble, such as the mean
and covariance. Through the mean and covariance of
the radius{function describing the shape, the designer
reects his prejudices as to the class of shapes that will
contain the optimizer.
We select �, "2, and �(�; �) and proceed with the

validation, the surrogate{based optimization, and the
candidate{based a posteriori error analysis. For this
problem we choose � = :18, and "2 = :18. The distance
criterion chosen, �(�; �), is the Hausdor� distance. With
Equation (5), and our values of � and "2, we �nd that
30 validation points are needed. The resulting model
prediction error is U = :15.
For the design problem, we choose a target drag � =

304 dynes, and �nd the surrogate{predicted optimizer,
~b�(�). Based on � = :18, we �nd �max = :35, using
a \best scaled" geometry for the acceptance/rejection.
The region in the proximity of the ~b�(�) is then queried
for a candidate design B̂�(�). With this candidate, the
following predictability statement can be made: With
con�dence greater than :82,

jFD(B̂)� �j

�
� j1� ��j+ ��U = :18 : (21)

In words, with con�dence greater than :82, the abso-
lute di�erence between the actual drag on the candi-
date design and the target drag, � = 304 dynes, nor-
malized by the target drag, will be less than or equal
to :18. The coe�cient, ��, present in the �nal pre-
dictability statement results from the scale-invariance
(self-similarity) in the linear Stokes drag relation. This
coe�cient is near one and has the e�ect of increas-
ing the model prediction error, U , from :15 to the
value :18 present in Equation (21). Three-dimensional
plots of the surrogate-predicted optimal design and the
proximal{candidate are shown in Figure 5.
A designer can conclude from this result that there

is likely to be a design near the surrogate{predicted
optimal design which will satisfy the target drag re-
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~b�(�) ~FD(~b
�) = � = 304 B̂�(�) FD(B̂

�) = 312

Figure 5: The surrogate{predicted optimal shape (left) and the proximal{candidate design (right). The target drag, �,

and, the simulation{predicted Stokes drag of the proximal{candidate are indicated.

quirement to within 18%. If this is deemed satisfac-
tory, the designer can consider the process a success.
The advantage of this approach is that, at this point,
the designer can explore other objective functions us-
ing the same validated surrogate, without the need for
additional simulation evaluations.
If the error reected on the right side of Equation (21)

is deemed too large, it can be reduced by an improved
surrogate, which could be accomplished, say, by ded-
icating a portion of the simulation evaluations to the
construction of a response surface. A response surface
would likely introduce a �nite �0 in (10) (not present
for the simple surrogate presented here). To reduce �0,
a smaller prediction region R (physically) is necessary,
which requires a smaller "1 and, therefore, either more
validation points or a better �(p) (one that more accu-
rately anticipates the \location" of the optimizer).
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